3.327 \(\int \cot ^2(c+d x) \csc (c+d x) \sqrt{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=101 \[ -\frac{a \cot (c+d x)}{4 d \sqrt{a \sin (c+d x)+a}}+\frac{5 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a \sin (c+d x)+a}}\right )}{4 d}-\frac{\cot (c+d x) \csc (c+d x) \sqrt{a \sin (c+d x)+a}}{2 d} \]

[Out]

(5*Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(4*d) - (a*Cot[c + d*x])/(4*d*Sqrt[a + a*
Sin[c + d*x]]) - (Cot[c + d*x]*Csc[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/(2*d)

________________________________________________________________________________________

Rubi [A]  time = 0.397162, antiderivative size = 101, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.172, Rules used = {2874, 2975, 2980, 2773, 206} \[ -\frac{a \cot (c+d x)}{4 d \sqrt{a \sin (c+d x)+a}}+\frac{5 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a \sin (c+d x)+a}}\right )}{4 d}-\frac{\cot (c+d x) \csc (c+d x) \sqrt{a \sin (c+d x)+a}}{2 d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2*Csc[c + d*x]*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(5*Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(4*d) - (a*Cot[c + d*x])/(4*d*Sqrt[a + a*
Sin[c + d*x]]) - (Cot[c + d*x]*Csc[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/(2*d)

Rule 2874

Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Dist[1/b^2, Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^(m + 1)*(a - b*Sin[e + f*x]), x], x] /;
 FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && (ILtQ[m, 0] ||  !IGtQ[n, 0])

Rule 2975

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*(c + d*S
in[e + f*x])^(n + 1))/(d*f*(n + 1)*(b*c + a*d)), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n +
 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n]
 || EqQ[c, 0])

Rule 2980

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b^2*(B*c - A*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(n
+ 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n + 1)
*(b*c + a*d)), Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \cot ^2(c+d x) \csc (c+d x) \sqrt{a+a \sin (c+d x)} \, dx &=\frac{\int \csc ^3(c+d x) (a-a \sin (c+d x)) (a+a \sin (c+d x))^{3/2} \, dx}{a^2}\\ &=-\frac{\cot (c+d x) \csc (c+d x) \sqrt{a+a \sin (c+d x)}}{2 d}+\frac{\int \csc ^2(c+d x) \sqrt{a+a \sin (c+d x)} \left (\frac{a^2}{2}-\frac{3}{2} a^2 \sin (c+d x)\right ) \, dx}{2 a^2}\\ &=-\frac{a \cot (c+d x)}{4 d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \csc (c+d x) \sqrt{a+a \sin (c+d x)}}{2 d}-\frac{5}{8} \int \csc (c+d x) \sqrt{a+a \sin (c+d x)} \, dx\\ &=-\frac{a \cot (c+d x)}{4 d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \csc (c+d x) \sqrt{a+a \sin (c+d x)}}{2 d}+\frac{(5 a) \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{4 d}\\ &=\frac{5 \sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{4 d}-\frac{a \cot (c+d x)}{4 d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \csc (c+d x) \sqrt{a+a \sin (c+d x)}}{2 d}\\ \end{align*}

Mathematica [B]  time = 0.74775, size = 249, normalized size = 2.47 \[ -\frac{\csc ^7\left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\sin (c+d x)+1)} \left (-2 \sin \left (\frac{1}{2} (c+d x)\right )+6 \sin \left (\frac{3}{2} (c+d x)\right )+2 \cos \left (\frac{1}{2} (c+d x)\right )+6 \cos \left (\frac{3}{2} (c+d x)\right )+5 \cos (2 (c+d x)) \log \left (-\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )+1\right )-5 \log \left (-\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )+1\right )-5 \cos (2 (c+d x)) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )-\cos \left (\frac{1}{2} (c+d x)\right )+1\right )+5 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )-\cos \left (\frac{1}{2} (c+d x)\right )+1\right )\right )}{4 d \left (\cot \left (\frac{1}{2} (c+d x)\right )+1\right ) \left (\csc ^2\left (\frac{1}{4} (c+d x)\right )-\sec ^2\left (\frac{1}{4} (c+d x)\right )\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^2*Csc[c + d*x]*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

-(Csc[(c + d*x)/2]^7*Sqrt[a*(1 + Sin[c + d*x])]*(2*Cos[(c + d*x)/2] + 6*Cos[(3*(c + d*x))/2] - 5*Log[1 + Cos[(
c + d*x)/2] - Sin[(c + d*x)/2]] + 5*Cos[2*(c + d*x)]*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] + 5*Log[1 -
Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] - 5*Cos[2*(c + d*x)]*Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] - 2*Sin
[(c + d*x)/2] + 6*Sin[(3*(c + d*x))/2]))/(4*d*(1 + Cot[(c + d*x)/2])*(Csc[(c + d*x)/4]^2 - Sec[(c + d*x)/4]^2)
^2)

________________________________________________________________________________________

Maple [A]  time = 0.939, size = 126, normalized size = 1.3 \begin{align*} -{\frac{1+\sin \left ( dx+c \right ) }{4\, \left ( \sin \left ( dx+c \right ) \right ) ^{2}\cos \left ( dx+c \right ) d}\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) } \left ( -5\,{\it Artanh} \left ({\frac{\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) }}{\sqrt{a}}} \right ) \left ( \sin \left ( dx+c \right ) \right ) ^{2}{a}^{2}+5\,\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) }{a}^{3/2}-3\, \left ( -a \left ( \sin \left ( dx+c \right ) -1 \right ) \right ) ^{3/2}\sqrt{a} \right ){a}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{a+a\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*csc(d*x+c)^3*(a+a*sin(d*x+c))^(1/2),x)

[Out]

-1/4*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(-5*arctanh((-a*(sin(d*x+c)-1))^(1/2)/a^(1/2))*sin(d*x+c)^2*a^2+
5*(-a*(sin(d*x+c)-1))^(1/2)*a^(3/2)-3*(-a*(sin(d*x+c)-1))^(3/2)*a^(1/2))/a^(3/2)/sin(d*x+c)^2/cos(d*x+c)/(a+a*
sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \sin \left (d x + c\right ) + a} \cos \left (d x + c\right )^{2} \csc \left (d x + c\right )^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*cos(d*x + c)^2*csc(d*x + c)^3, x)

________________________________________________________________________________________

Fricas [B]  time = 1.7461, size = 853, normalized size = 8.45 \begin{align*} \frac{5 \,{\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \,{\left (\cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt{a \sin \left (d x + c\right ) + a} \sqrt{a} - 9 \, a \cos \left (d x + c\right ) +{\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + 4 \,{\left (3 \, \cos \left (d x + c\right )^{2} +{\left (3 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) + 2 \, \cos \left (d x + c\right ) - 1\right )} \sqrt{a \sin \left (d x + c\right ) + a}}{16 \,{\left (d \cos \left (d x + c\right )^{3} + d \cos \left (d x + c\right )^{2} - d \cos \left (d x + c\right ) +{\left (d \cos \left (d x + c\right )^{2} - d\right )} \sin \left (d x + c\right ) - d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/16*(5*(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)*sqrt(a)*log((
a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) -
 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x +
c) - a)/(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) + 4*(3*cos(d
*x + c)^2 + (3*cos(d*x + c) + 1)*sin(d*x + c) + 2*cos(d*x + c) - 1)*sqrt(a*sin(d*x + c) + a))/(d*cos(d*x + c)^
3 + d*cos(d*x + c)^2 - d*cos(d*x + c) + (d*cos(d*x + c)^2 - d)*sin(d*x + c) - d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**3*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError